Perturbation theory for convolution semigroups

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convolution Semigroups of States

Convolution semigroups of states on a quantum group form the natural noncommutative analogue of convolution semigroups of probability measures on a locally compact group. Here we initiate a theory of weakly continuous convolution semigroups of functionals on a C∗-bialgebra, the noncommutative counterpart of a locally compact semigroup. On locally compact quantum groups we obtain a bijective cor...

متن کامل

Semiuniform semigroups and convolution

Semiuniform semigroups provide a natural setting for the convolution of generalized finite measures on semigroups. A semiuniform semigroup is said to be ambitable if each uniformly bounded uniformly equicontinuous set of functions on the semigroup is contained in an ambit. In the convolution algebras constructed over ambitable semigroups, topological centres have a tractable characterization. 1...

متن کامل

Quantized Convolution Semigroups

We describe our construction of a continuous tensor product system in the sense of Arveson for a general W ∗-continuous completely positive semigroup of B(H) (H separable). This product system is canonically isomorphic to the product system of the minimal dilation E0-semigroup. We use this construction to show that contrary to previous speculation the minimal dilations of all quantized convolut...

متن کامل

Partial Semigroups and Convolution Algebras

Partial Semigroups are relevant to the foundations of quantum mechanics and combinatorics as well as to interval and separation logics. Convolution algebras can be understood either as algebras of generalised binary modalities over ternary Kripke frames, in particular over partial semigroups, or as algebras of quantale-valued functions which are equipped with a convolution-style operation of mu...

متن کامل

Convolution semigroups, canonical processes, and Brownian motion

the product σ-algebra. Let A : E × E → E be A(x1, x2) = x1 + x2. For ν1, ν2 ∈ P(E), the convolution of ν1 and ν2 is the pushforward of the product measure ν1 × ν2 by A: ν1 ∗ ν2 = A∗(ν1 × ν2). The convolution ν1 ∗ ν2 is an element of P(E). Let I = R≥0. A convolution semigroup is a family (νt)t∈I of elements of P(E) such that for s, t ∈ I, νs+t = νs ∗ νt. From this, it turns out that μ0 = δ0. 2 A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2010

ISSN: 0022-1236

DOI: 10.1016/j.jfa.2010.03.018